
Lists	of	Structures

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	4.3

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• Lists	of	structures	occur	all	the	time
• Programming	with	these	is	no	different:
– write	down	the	data	definition,	including	
interpretation	and	template

– Follow	the	Recipe!

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– write	down	a	template	for	lists	of	compound	data
– use	the	template	to	write	simple	functions	on	lists	
of	compound	data

3

Tweaking	the	Template	Recipe

• Programming	with	lists	of	compound	data	is	
no	different	from	programming	with	lists	of	
scalars,	except	that	we	make	one	small	change	
in	the	recipe	for	templates

4

The	template	recipe,	updated
Question Answer

Does	the	data	definition	 distinguish	
among	different	subclasses	of	data?

Your	template	needs	as	many	cond
clauses	as	subclasses	that	the	data	
definition	 distinguishes.

How	do	the	subclasses	differ	from	each	
other?

Use	the	differences	 to	formulate	a	
condition	per	clause.

Do	any	of	the	clauses	deal	with	structured	
values?

If	so,	add	appropriate	selector	expressions	
to	the	clause.

Does	the	data	definition	 use	self-
references?

Formulate	``natural	recursions''	for	the	
template	to	represent	the	self-references	
of	the	data	definition.

Do	any	of	the	fields	contain	compound or	
mixed	data?

If	the	value	of	a	field	is	a	foo, add	a	call	to	
a	foo-fn to	use	it.

5

Observe	that	this	is	just	what	we	did	 for	self-
references,	because	a	list	is	a	kind	of	mixed	data.	

Books,	again

6

(define-struct book (author title on-hand price))

;; A Book is a
;; (make-book String String NonNegInt NonNegInt)
;; Interpretation:
;; --author is the author’s name
;; --title is the title
;; --on-hand is the number of copies on hand
;; --price is the price in USD*100

;; book-fn : Book -> ??
;; (define (book-fn b)
;; (... (book-author b)
;; (book-title b)
;; (book-on-hand b)
;; (book-price b)))

Here	is	the	data	definition	 for	a	book	 in	a	
bookstore,	with	structure	definition,	 data	
definition,	 interpretation,	and	template.

Notice	that	the	data	definition	doesn't	say	
WHICH	list	of	books	this	is.		It	could	be	all	
the	books	 in	the	bookstore,	 just	the	
paperbacks,	the	ones	that	have	been	
ordered	in	the	 last	30	days,	etc.	etc.

Template	for	ListofBooks
;; A ListOfBooks (LOB) is either
;; -- empty
;; -- (cons Book LOB)

;; lob-fn : LOB -> ??
;; (define (lob-fn lob)
;; (cond
;; [(empty? lob) ...]
;; [else (...
;; (book-fn (first lob))
;; (lob-fn (rest lob)))]))

7

When	dealing	with	a	list	of	
structures,	you	should	 insert	a	call	to	
a	function	here.

(rest	lob)	 is	a	LOB,	so	we	wrap	it	in	a	
lob-fn.

Similarly,	(first	lob)	 is	a	Book,	 so	we	
wrap	it	in	a	book-fn.

Example:	if	book-fn is	just	a	selector,	
you	can	put	it	in	directly

;; books-authors : LOB -> ListOfString
;; STRATEGY: Use template for LOB on lob
(define (books-authors lob)
(cond
[(empty? lob) empty]
[else (cons

(book-author (first lob))
(books-authors (rest lob)))]))

8

book-author is	
certainly	a	book-fn!

Same	thing	for	lists	of	other	non-scalar	
data

;; A ListOfKeyEvents (LOKE) is either
;; -- empty
;; -- (cons KeyEvent LOKE)

;; loke-fn : LOKE -> ??
;; (define (loke-fn loke)
;; (cond
;; [(empty? loke) ...]
;; [else (...
;; (kev-fn (first loke))
;; (loke-fn (rest loke)))]))

9

(rest	loke)	is	a	LOKE,	so	we	wrap	it	in	
a	loke-fn.

Similarly,	(first	loke)	is	a	KeyEvent,	so	
we	wrap	it	in	a	kev-fn.

Module	Summary:	Self-Referential	or	
Recursive	Information

• Represent	arbitrary-sized	information	using	a	
self-referential (or	recursive)	data	definition.

• Self-reference	in	the	data	definition	leads	to	
self-reference	in	the	template.

• Self-reference	in	the	template	leads	to	self-
reference	in	the	code.

• Writing	functions	on	this	kind	of	data	is	easy:	
just	Follow	The	Recipe!

• But	get	the	template	right!

10

Summary

• At	the	end	of	this	lesson	you	should	be	able	
to:
– write	down	a	template	for	lists	of	compound	data
– use	the	template	to	write	simple	functions	on	lists	
of	compound	data

• The	Guided	Practices	will	give	you	some	
exercise	in	doing	this.

11

Next	Steps

• Study	04-2-books.rkt	in	the	Examples	file
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	4.4
• Go	on	to	the	next	lesson

12

